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Abstract

This paper is the third and last part of work studying analytically and numerically the second-order turbulence
model [B.A. Kolovandin, Modelling the dynamics of turbulent transport processes, in: Advances in Heat Transfer,
vol. 21. Pergamon, 1991, pp. 185±234, and B.A. Kolovandin, V.U. Bondarchuk, C. Meola, G. De Felice, Modeling

of the homogeneous turbulence dynamics of stably strati®ed media, Int. J. of Heat and Mass Transfer 36 (1993)
1953±1968] for homogeneous turbulence in strati®ed media. As in the two previous parts [V.A. Babenko,
Homogeneous turbulence evolution in stably strati®ed ¯owÐI. Internal gravity waves at low inverse Froude
numbers, Int. J. of Heat and Mass Transfer 40 (1997) 1951±1961, and V.A. Babenko, Homogeneous turbulence

evolution in stably strati®ed ¯owÐII. Asymptotic regimes of large evolution time at low inverse Froude numbers.
Int. J. of Heat and Mass Transfer 40 (1997) 1963±1976], the model is studied with asymptotic small parameter
methods. In this part the inverse Froude number and the inverse evolution time are used for this purpose. # 1999

Elsevier Science Ltd. All rights reserved.

1. Introduction

The evolution of homogeneous turbulent ¯ow in

media with constant vertical gradients of density or

temperature remains a keystone problem in the statisti-

cal ¯uid mechanics of turbulent heat and mass transfer

[1]. This model problem of shearless turbulence can be

considered as a realistic approach to describe turbu-

lence evolution in atmospheric and oceanic streams,

where there exists a strati®cation caused by the gravity

force and the temperature or salinity drop. Among the

application of this problem are ocean thermocline, the

propagation of waste pollutants in the ocean and at-

mosphere, and wakes monitoring. Analytical reviews

of the problem together with the data of experiments

and numerical runs one can ®nd in [1±8] as well as in

previous parts of this paper [9,10].

In the ®rst part [9], homogeneous turbulence in a

density strati®ed medium was studied by parametric

asymptotic expansion on an inverse Froude number

Fr, represented by a ratio of inertia forces to buoyancy

forces. This number is a perfect small parameter in the

majority of practical important cases. Using the pertur-

bation methods, non-linear internal gravity waves were

analytically separated from the rest of turbulent

motion and analytical expressions for the amplitudes

and frequency of internal gravity waves were found. In

the second part [10], some analytical solutions for the

functions of the model were obtained in an asymptotic

case of weak turbulence (i.e. in the ®nal stage of turbu-

lence decay) and the behavior of various turbulent

characteristic scales was discussed. This paper con-

siders two matters remaining unstudied in [9] and [10],

namely approximate solution for near time span at
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Fr<<1 and analysis for far time span at an arbitrary
Froude number.

2. Governing equations

In the Boussinesq approximation both the cases of
temperature and density strati®cation look identical.

To be more de®nite we shall discuss density strati®-
cation further.
The system of ordinary di�erential equations from

[6] for modeling the strati®ed turbulence can be written
in dimensionless form as (see [9])
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where the asymptotic values of the turbulent Prandtl
number, s1, and the time scale ratio R1 at in®nity
time in a passive scalar case (Fr = 0) are taken from

[11].
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In theory [12] empiric functions F ��u , F ��r1 and F ��r2 were
used to model an interaction of vortexes with di�erent

Nomenclature

E=u 2
i /U

2 dimensionless kinetic
energy

Fr=NM/U inverse Froude number

M cell size of a grid
N � �g d �r= �r dx 2�1=2 Brunt±VaÈ isaÈ laÈ number
Q � �ÿu2r�=�UMd �r =dx 2�2 dimensionless turbulent

transverse mass ¯ux
R22=u 2

2/U
2 vertical component of

velocity pulsation tensor

Re=UM/n Reynolds number ~t ���
E
p

t � Nt�
Rl=(5ETu Re )

1/2 turbulent Reynolds
number

t=Fr Tr fast and slow time vari-
ables

Tu=(u 2
i U )/(EuM ) time scale of velocity

®eld

Tr � �r2U �=�ErM � time scale of density
®eld

u 2
i doubled turbulence kin-

etic energy
U ¯ow velocity.

Greek symbols

Eu dissipation rate of vel-
ocity ¯uctuations

Er dissipation rate of den-
sity ¯uctuations

Y � r2=�Md �r =dx 2�2 squared density ¯uctu-
ation

s molecular Prandtl num-

ber
t � dimensional time
t=t �U/M dimensionless time.
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scales in velocity and scalar ®elds. They depend exclu-
sive upon the turbulence Reynolds number Rl through

the function d�R2
l� � 1ÿ 2=�1�

���������������������
1� du=R2

l

q
�, where

du=2800 (see [12])

F ��u � 11
3 ÿ 13

15d, F ��r1 � 5
3 �1ÿ d �, F ��r2 � 2� 4

3d:

The function d(R 2
l) represents turbulence inertia e�ects

in equations and separates the regimes of strong

(d4 0 at Rl>>1) and weak (d4 1 at Rl<<1) turbu-
lence.

3. Near time span

In this section for a small strati®cation case (when

the inverse Froude number Fr is small) we shall con-
sider a near time span extended approximately over
three ®rst periods of internal waves. Near time span is
characterized by the large initial turbulence Reynolds

number Rl and the small value of wave-averaged verti-
cal mass ¯ux.
For the analysis of near time span we shall slightly

alter a set of main variables, as compared with those
in [9]. It allows one to group the terms of Eqs. (1)
alternatively in accordance with their magnitudes.

Namely, we change the de®nition of dimensionless
mass ¯ux q. The new variable is de®ned as q1=q/e,
where e0Fr is a small parameter. Other main vari-
ables remain unchanged

q1 � eTrQ=E, W � EY=E, K � R22=E,

R � Tu=Tr, t � ETr, ~t � et: �4�

In (4) the variable q1 represents the ¯ux Richardson
number, W is the ratio of the potential energy of den-

sity ¯uctuations EY to the turbulence kinetic energy E,
K is the fraction of turbulence kinetic energy (TKE)
stored in vertical velocity ¯uctuations, R the time scale

ratio, t the density ®eld time scale multiplied by E=e 2.
In terms of these new variables the system of Eqs. (1)
can be rewritten as
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where a1=2d(s1+3/5)/R1, a2=a1s/(1+s ) are the

functions dependent on d(R 2
l) and s, p = 4d/

5R1+5d '/3R, d '=1ÿd and A1 is the function A1(K, d,
W )=K+W[d(K ÿ 1/3)ÿ2/3].
Further, we shall need two auxiliary di�erential

equations, one for the function A1 and another for
d(R 2

l). They can be easily obtained from their de®-
nitions and system (5)
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and p1 is a logarithmic derivative of d with respect
to R 2

l: p1=[d(d )/d(R 2
l)]R

2
l=(1/(1+du/R

2
l)
1/2ÿ1) �

(1+(1+du/R
2
l)
1/2)ÿ1=ÿdd '/(1+d ).

At large t the problem (5) is singular in a sense of
asymptotic expansions. It is caused by the fact that the
fourth equation of system (5) degenerates into the

algebraic form: t 2A1=0 at t>>1. Alternatively, using a
small perturbation approach, we can see that the
fourth equation in (5) degenerates into an algebraic

form t 2A1=0 at e4 0.
To avoid a singularity in asymptotic expansions we

shall use a two-scale decomposition [13,14] and intro-

duce the pair of time variables, t and ~t . The outer
variable t is shrunk with regard to the variable ~t and
so is preferable at large ~t . At small t (that is in initial
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time span), the variable ~t can be thought of as an
inner (or stretched) one because ~t0t=e.
Considering the functions in (5)±(7) as being depen-

dent on two time variables t and t we shall expand
them on exponents of the small parameter e, as it was

done earlier in [9]

f � f̂�t� � E ~f �t, ~t � � � � � ,

q1 � q̂1�t� � e ~q 1�t, ~t � � � � � ,
�8�

where f is one of the functions from systems (5)±(7)
besides q1. In (8) the ®rst exponent of e is absent for

all the variables except for q1, thus re¯ecting the fact,
that these functions depend on the inner variable ~t
starting from the second-order terms. It can be seen

from (5), where at e = 0 these functions are constants.
Substituting (8) into systems (5)±(7), with the deriva-

tives being decomposed according to formula �d=d~t � �
�@=@ ~t � � ep�@=@ t�, and combining the terms with iden-
tical exponents of e we get two sets of equations
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and one more equation deriving the dependence of the
®rst term in expansion for turbulent mass ¯ux on t
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where ĉ3 � R̂
ÿ1�2ÿ d̂

0
=3� ÿ 10d̂

0
K̂ ÿ â1 � p̂, all the

functions with `hats' are calculated with the ®rst terms

of decompositions (8) and AÄ1 is the second term in de-
composition for A1: A1 � Â1�t� � E ~A �t, ~t � � � � �.
Splitting Eq. (6) on the exponents of e results in

tp̂
dÂ1

dt
� 2ĉ1, t

@ ~A 1

@ ~t
� 2ĉ2q̂1:

Di�erentiating partially on ~t the fourth line of (10)

and substituting the last expression leads to a wave
equation for qÃ1

@ 2q̂1
@ ~t 2
� o 2q̂1 � 0 �12�

where o 2=ÿ2cÃ2(t ). Writing this expression for the fre-

quency in more detail, we have
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The form of this relation for the frequency coincides
with that in [9] with the only di�erence that here the
oscillations take place in the ®rst term of decompo-

sition but not in the second one as in [9]. The ®rst
term qÃ in [9] was a non-zero wave-averaged mass ¯ux.
In the present analysis it is absent.

The third and the fourth lines of system (9) contra-
dict each other since the function Ŵ can be found dif-
ferently from them. At very small t, t<<1, the fourth

line of (9), tÃ2AÃ1=0, should be omitted, since the value
of AÃ1 becomes inde®nite in this case. At ti1, alterna-
tively, the third line of (9) should be dropped, because
it was obtained as the equation of lower order in de-

composition.
In [9] the expression like (11) was used for the deter-

mination of qÄ at known qÃ(t ). Here it is served to ®nd

out the dependence qÃ1(t ). Doing so, the derivative
@ ~q 1=@ ~t in (11) should be neglected in order to close
the analysis and ®r the number of unknown functions

to the number of equations in (9) and (10). After this,
the variables in (11) and (12) are separated with the
substitution q̂1 � q̂ 01�t�q̂ 001 �~t � and we get the ordinary
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di�erential equations for the amplitude qÃ '1(t ) and
phase q̂ 001 �~t � of mass ¯ux oscillation

tp̂
dq̂ 01
dt
� q̂ 01ĉ3,

d2q̂ 001
d~t 2
� o 2q̂ 001 � 0 �14�

Note, that Eqs. (9) and (14) could also be deduced as
the special case of analysis [9] if we set qÃ=0. In this
case the second term in decomposition for q becomes

the leading one and it is obeyed in relations (14).
Thus, the considered approach of near time span is
simply a partial case of more common analysis from

[9]. Below we shall make comparisons with [9].
The equations for KÃ , W, and EÃ in (9) can be solved

separately after solving the pair of equations for dÃ and
RÃ. The variable dÃ can be considered as a new indepen-

dent variable. In this case the variables in the equation
for RÃ are separated

dR̂

R̂�1ÿ R̂=R1�
� 4

5

�1� d̂� d�d̂�
�1ÿ d̂�� 13 � 13

15 d̂�
: �15�

Integrating in (15) gives

1

R̂
ÿ 1

R1
�
�

1

R0
ÿ 1

R1

�

�
"�

5� 13d0

5� 13d̂

�4=3 1ÿ d̂

1ÿ d0

#4=3

:

�16�

Similarly, the solution of the ®rst and sixth equations

in (9) can be written in the forms KÃ(dÃ ) and EÃ(dÃ ).
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It is not di�cult to express in quadratures the depen-
dencies on dÃ of the other functions with `hats' in (9).

For W(dÃ ) we have

Ŵ � W0 exp

�d̂
d0

2�1� d̂��1ÿ R̂�
d̂� 13 � 13

15 d̂��1ÿ d̂�
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where RÃ(dÃ ) is calculated according to (16). It is more
convenient to take this integral numerically, as well as
in the corresponding relation for dÃ(t ) arising at inte-

grating in the ®fth line of (9).
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It follows from (16)±(19), that in near time span the
variance of the functions is dictated by the variance of

the parameter dÃ or the turbulent Reynolds number Rl.
The functions KÃ(dÃ ) and EÃ(dÃ ) do not depend on the
molecular Prandtl number. The same refers to the uni-

versal dependence of the ratio (RÃ ÿ1ÿRÿ11 )/
(Rÿ10 Rÿ11 )=f(dÃ ). As the ratio (dÃ/dÃ0) grows, the relation
(17) describes a very fast tendency of KÃ to the isotropic

value 1/3. At small dÃ the term in square brackets in
(16) decreases with increasing dÃ. Hence, whether the
function RÃ should increase or decrease, depends on the

sign of the di�erence (Rÿ10 ÿRÿ11 ). If this di�erence is
negative, as in the case of water, RÃ decreases. In the
case of air with this di�erence being positive, the value
of RÃ increases. The rate of the variance of RÃ is slowed

down with time. It is determined by decreasing the ®rst
factor in square brackets in (16).
A more full analysis can be carried out taking the

assumption d<<1. In this case di�erential equations (9)
and (14) can be simpli®ed to:
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The solutions of (21) for KÃ, RÃ, dÃ, and EÃ are the follow-
ing:

�K̂ÿ 1=3�=�K0 ÿ 1=3� � �d̂=d0�ÿ21,

�
1

R
ÿ 1

R1

�
=

�
1

R0
ÿ 1

R1

�
� exp

�
ÿ 12

5
�d̂ÿ d0�

�
,

Ê=E0 � �d̂=d0�ÿ6,

d̂=d0 � y1=5, �22�

where y=t/t0. Because of the function dÃ and d0 being
small, the di�erence dÃÿd0 in the expression for RÃ (22)
is also small, and the equation for W in (21) can be

solved for the `frozen' value of RÃ. This assumptions
results in the power solution

Ŵ � W0y6=5�1ÿR̂�: �23�

In the case RÃ < 1, which is characteristic of gases with
a molecular Prandtl number s < 1, expression (23)
describes a near power decrease of W and, oppositely, a
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near power growth in media with s>1. Expression
(23) is appropriate only at low t when t 2<<1. With

growing t it should be replaced by the algebraic re-
lation following from the fourth line of (9):

Ŵ � K̂

2=3ÿ d̂�K̂ÿ 1=3�
: �24�

Finally, let us simplify the equation for amplitude qÃ '1
at dÃ<<1. Taking into account a fast tendency of KÃ to

1/3 and a `frozen' value of RÃ, Eq. (14) can be pre-
sented in a form of near power law

t

q̂ 01

dq̂ 01
dt
' 2�1ÿ R̂�: �25�

The expression for the frequency of oscillations (13) at
small dÃ can be simpli®ed up to

o 2 � ÿ2��K̂ÿ 4=5� ÿ 2
3 �1� Ŵ�� � 4� 1115 ÿ K̂�:

Substituting the solution for the ®rst term of vertical
mass ¯ux q̂1�t, t� � q̂ 01�t� sin �ot̂ � f� into the
equations of system (10) we can obtain a number of

simple relationships between phases and amplitudes of
oscillations in various functions of the model. Here
they are omitted for brevity because they completely

coincided with those deduced earlier for a distant
region (formulae (21)±(26) from [9]) if replacing qÄ '
with qÃ '1. Similar expressions will be repeated in the

next section.
For the validity check of the dependencies obtained

above they were compared with the numerical solu-

tion of system (1) with Gear's method. An initial data
set was taken from Ref. [6] for s=800 and

Fr = 3.67 � 10ÿ2: R220
=3.47 � 10ÿ4, E0=1.33 � 10ÿ3,

Tr0
=38.4, Tu0

=43.3, Q0=3.31 � 10ÿ3, Y0=0.153.
This data set corresponds to one of the experimental

points from Ref. [2].
Fig. 1 shows the comparison of two analytical ex-

pressions for the function d̂�~t � in a near time span,
(20) and (22), with the numerical solution of system
(1). In the numerical run the function d̂�~t � grows a

little more slowly, than in expression (22), which sets
the law of `one-®fth'. The more general expression (20)
corresponds better to the numerical solution. Initial

conditions for the functions with `hats' were found as
it was described in [9].

For the time scale ratio R�~t � the comparison of a
full numerical solution, smoothed solution (Eqs. (9)
and (15) from [9]), and two analytical expressions [one

of general form in the near area approach, (16), and
another at d<<1, (22)] is represented in Fig. 2. With a

growth of time an agreement between the numerical
and the analytical solution is worsened.
Fig. 3 plots the same comparison for the kinetic

energy of turbulence E�~t �. As in the two previous
®gures, the solution of (18) is very close to the full nu-

merical solution, while analytical power solution (22),
which is characteristic of isotropic medium, gives the
lower values of kinetic energy.

Analytical solutions for KÃ(dÃ ) at small dÃ, (22) and in
a more common case, (17), correspond worse to the

Fig. 1. Plot of various dependencies for the functions d�~t �
and d̂�~t �: 1. d in numerical computation by system (1); 2. dÃ

according to computation in [9]; 3. dÃ according to formula

(2); 4. dÃ according to (22).

Fig. 2. Plot of various dependencies for the functions R�~t �
and R̂�~t �: 1. R in numerical computation by system (1); 2. RÃ

according to computation in [9]; 3. RÃ according to formula

(16); 4. RÃ according to (22).
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numerical computation because their internal property

has the presence of asymptotics KÃ=1/3 (Fig. 4).

Clearly formed asymptotic regime KÃ=1/3 is observed
in numerical runs only at very small E. With increasing

E the slope of a weakly inclined part of the plot K̂�~t �
grows and this intermediate asymptotic disappears. As

in the previous ®gures, the solution of the `smoothed'
di�erential system from [9] describes the wave averaged

behavior of the numerical solution very well.

The time interval, during which the power solution

for W, (23), accords with the numerical one (Fig. 5),
appears very small. A more accurate solution, (19), is

closer to the numerical data, however, it still remains

unsatisfactory. Since in the initial data the condition
t>>1 took place, a more successful approach for KÃ(dÃ ),

than (23) and (19), can be expressed in accordance

with formula (24).

In the equations of system (9) and (10), the function
qÃ1 is a kind of passive admixture. It can be determined

after solving system (9). Physically, a near time span

approach responds to the initial stage of strati®ed tur-

bulence evolution when a gravity force only e�ects the
largest eddies in a ¯ow. According to obtained ap-

proximate solutions, the in¯uence of strati®cation

reveals itself in oscillations imposed on the smooth
variance of the functions which are dependent only on

the decreasing turbulence Reynolds number.

The usage of such an approach is justi®ed by the

fact that it enables one to ®nd out satisfactory analyti-
cal solutions. On the other hand, it leads to less precise

relations than the more common ones from [9] (see

Figs. 1±5). As to the expression for turbulent mass
¯ux, (14), the ¯ux qÃ1 was presented in a kind of a

product of harmonic function q̂ 001 �~t � to variable ampli-
tude qÃ '1(t ) without any additive components. It dis-

agrees with the numerical run (see Fig. 6) and is the
consequence of the fact that one of the equations of

system (9) was dropped (namely, the fourth line) as it
was inconsistent with the ®fth line. Thus, one equation

Fig. 3. Plot of various dependencies for the functions E�~t �
and Ê�~t �: 1. E in numerical computation by system (1); 2. EÃ

according to computation in [9]; 3. EÃ according to formula

(18); 4. EÃ according to (22).

Fig. 4. Plot of various dependencies for the functions K�~t �
and K̂�~t �: 1. K in numerical computation by system (1); 2. KÃ

according to computation in [9]; 3. KÃ according to formula

(17); 4. KÃ according to (22).

Fig. 5. Plot of various dependencies for the functions W�~t �
and Ŵ�~t �: 1. W in numerical computation by system (1); 2. Ŵ
according to computation in [9]; 3. Ŵ according to formula

(23); 4. Ŵ according to (24).

V.A. Babenko / Int. J. Heat Mass Transfer 42 (1999) 4549±4565 4555



disappeared from the system together with an addition
functionÐthe additive component of turbulent mass
¯ux.

To improve the drawback it may pass again to the
variable q=Fr q1 in the equation for turbulent mass
¯ux after ®nding out approximation solutions for the

other functions of the model and to split the equations
on exponents of the small Fr number according to the
same scheme, thus obtaining for the mass ¯ux, a more

precise presentation with a nonzero smooth com-
ponent

q1 � ÿĉ1=�Fr ĉ2� � q̂ 01 sin�o ~t � f0�: �26�

In Fig. 6 the comparison is made between (26) and the
numerical solution (curves 1 and 4, correspondingly).

For both of them the wave-averaged dependencies cal-
culated according to the algebraic formula

q̂1 � ÿĉ1=�Fr ĉ2� �27�

are also plotted (curves 3 and 6), where the coe�cients
cÃ1 and cÃ2 are taken from the approximate solutions

(16), (17), (20) and (24) (curve 3) and from a more pre-
cise analysis [9] (curve 6). Rounded curves (2 and 5)
for both variants are built with the formula: q1=ÿcÃ1/
(Fr cÃ2)+qÃ '1.
Summing up the results of the above comparisons

note that the dependencies for the functions RÃ, KÃ, EÃ, dÃ

in near time span approach, ®t the true evolution satis-
factorily. The use of the high turbulence Reynolds
number approach (dÃ<<1) leads to signi®cant errors,

caused mainly by the di�erence between the true
dependence d(t ) and the asymptotic law of `one-®fth',

(22). It is proved by the fact that the dependencies on
dÃ in common cases (16)±(18) and in the case of d<<1,
(22), di�er slightly (see Fig. 7).

For the functions W and q1 algebraic dependencies
(24), and (27) agree very well with numerical solutions
immediately from the initial conditions. For these

functions an alternative speci®c approach taking initial
conditions into consideration, such as formulae (19),
and (23), is applicable only at a very short time inter-

val.

4. Asymptotic expansion at an arbitrary Froude number

In this section we shall extend the previous analysis.
First, the case of a Froude number, which is not small,

will be considered. One more extension will deal with
the treatment of another strati®ed turbulence model by
the same asymptotic procedure.

To simplify the di�erential system (1) the following
set of dimensionless variables is introduced

q � Fr2 TrQ=E, W � Fr2 y=E, K � R22=E

R � Tu=Tr, t1 � Fr Tr, ~t � Fr � t � Nt�: �28�

In the case of an arbitrary Froude number this set of

Fig. 6. Comparison of various dependencies for turbulent

mass ¯ux in near time span approach and in [9].

Fig. 7. Comparison of power dependencies (16)±(18) for the

functions (1/RÃÿ1/R1)(1/R0ÿ1/R1)=fR (dÃ ), (KÃÿ1/3)/(K0ÿ1/
3)=fK (dÃ ), EÃ/E0=fE (dÃ ), with asymptotic formulae in the case

of d<<1, (22).
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variables is more convenient since it enables one to
exclude this number from the system. Varying a linear

scale M and a velocity scale U in the de®nitions of
non-dimensional variables we can set the Froude num-
ber to any value. For example, let us suppose new

scales to be U '=Uk and M '=M/k. It varies the
Froude number Fr '=Fr/k 2 and the Reynolds numbers
Re, Rel and the main variables R, q, K, W, d, t1, ~t
remain unchanged. Looking carefully at the analysis of
[9], where the in®nitesimal of the Fr was used, one can
note that it was applicable when a small order of the

Fr number in the equations did not interfere with the
order of the variable t=Fr 2 Tr. In other words,
besides the condition Fr<<1 another condition t>>Fr
(or t1>>1 in terms of this section variable) should also

be satis®ed. In this section we shall apply the asymp-
totic expansion procedure only for the condition t1>>1.
In comparison with the parametric expansion on the

small Fr number used in [9] this is a slightly more com-
mon case of coordinate expansion.
In view of designations (28) system (1) can be rewrit-

ten as

t1
dK

d~t
� ÿ7d

0�Kÿ 1=3�
R

� 2q�Kÿ 4=5�,

t1
dR

d~t
� 4

5
d�1ÿ R=R1� ÿ 2q�1ÿ a2R�R,

t1
dW
d~t
� 2

�
1

R
ÿ 1

�
W� 2q�1� W�,

t1
dq

d~t
� t21A1 � q

�
1

R

�
2ÿ d 0

3

�
ÿ10d 0Kÿ a1 � p

�
� 2q2,

dt

d~t
� 4d

5R1
� 5d 0

3R
� p,

t1
dE

d~t
� ÿ2E

R
ÿ 2qE, �29�

where designations for a1, a2, Rl, s, A1 coincide with
those in the previous section.

The additional equation for the function d is as fol-
lows:

t1
d�d �
d~t
� p1

�
F ��u ÿ 4

R
ÿ 2�2ÿ a2R�q

�
: �30�

Introducing the new independent variable x from the
relation

dx
d~t
� 1

t1
�31�

we shall seek an approximate solution of system (29)±
(30) as a function of two `independent' variables,

`slow' variable x and `fast' variable ~t . Assuming the
value of t1 to be large, we shall construct the expan-
sion of system (29) and (30) on exponents of 1/t1 in

the following form

f � f̂�x, ~t � �
~f �x, ~t �
t21
� � � � ,

q � q̂�x, ~t � � ~q �x, ~t �
t1
� � � � ,

�32�

where f is one of the functions K, R, W, d, E. We con-

sider that the initial conditions are those, that t10>>1.
Since p>0, the function t1 grows monotonously, so
the condition t1>>1 may be wrong only with some in-
itial time span.

Considering that the functions in (29) depend on
two variables ~t and x, we shall substitute their de-
composition (32) into (29). As a result the ®rst

equation of (29) can be written as

t1
@ K̂

@ ~t
� @ K̂
@x
� 1

t1

@ K̂

@ ~t
� ÿ7d̂

0�K̂ÿ 1=3�
R̂

� 2q̂

�
K̂ÿ 4

5

�
� 1

t1
2 ~q

�
K̂ÿ 4

5

�
:

�33�

Decomposition of all other equations in (29), except
that for q, is similar. Expansion in the equation for q

has the following form

t1
@ q̂

@ ~t
� @ q̂
@x
� @ ~q

@ ~t
� 1

t1

�
@ ~q

@x
ÿ p̂ ~q

�

� t21Â1 � ~A 1 � q̂ĉ3 � 2q̂2 � ~q

t1
�ĉ3 � 4q̂�: �34�

Equalling the terms with identical exponents of t1 in

(33) and (34), we get:

Ðat t 21

Â1 � K̂� Ŵ�d̂�K̂ÿ 1=3� ÿ 2=3� � 0; �35�

Ðat t1

@ K̂

@ ~t
� 0,

@ R̂

@ ~t
� 0,

@ Ŵ
@ ~t
� 0,

@ d̂

@ ~t
� 0,

@ q̂

@ ~t
� 0;

�36�

Ðat t 01 taking (36) into account

dK̂

dx
� ÿ7�1ÿ d̂��K̂ÿ 1=3�

R̂
� 2q̂�K̂ÿ 4=5�, �37�
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dR̂

dx
� 4

5
d̂�1ÿ R̂=R1� ÿ 2q̂R̂�1ÿ a2R̂�, �38�

dŴ
dx
� 2�R̂ÿ1 ÿ 1�Ŵ� 2q̂�1� Ŵ� �39�

d�d̂�
dx
� d̂�1ÿ d̂�

1� d̂

��
1

3
� 13

15
d̂

�
R̂
ÿ1 � 2q̂�2ÿ a2R̂�

�
, �40�

@ ~q

@ ~t
� ~A 1 � f �x�, �41�

where f(x )=ÿ(dqÃ/dx )+qÃcÃ3+2qÃ 2;

Ðat tÿ11

@ ~K

@ ~t
� 2�K̂ÿ 4=5� ~q , �42�

@ ~R

@ ~t
� ÿ2R̂�1ÿ â2R̂� ~q , �43�

@ Ŵ
@ ~t
� 2�1� Ŵ� ~q , �44�

@ ~d

@ ~t
� ÿ2p̂1�2ÿ â2R̂� ~q , �45�

@ ~q

@x
� ~q �ĉ3 � p̂� 4q̂�: �46�

Di�erentiating relation (35) we get

dÂ1

dx
� �ĉ1 � ĉ2q̂� � 0,

whence it follows the algebraic equation for the wave-

averaged vertical mass ¯ux

q̂ � ÿ ĉ1
ĉ2
: �47�

This wave-averaged mass ¯ux is caused by internal
wave motion. In order to satisfy the continuity con-
dition another mass ¯ux should exist not described by

the homogeneous turbulence equations. It is equal to
that given in (47) by absolute value and opposite in
direction. Relation (47) gives the ground to calculate

that known from the experimental works counter-¯ux
which occurs at small scales.
Relation (47) is a consequence of Eqs. (35)±(40). If

we intend to take the usage of (47) one of the di�eren-
tial equations in (35)±(40) should be omitted to avoid
this system being overdetermined. As was done in the

previous section we shall determine the variable Ŵ from
the algebraic Eq. (35) and omit the di�erential

equation for this variable, (39). The system of the two
algebraic equations (35) and (47) and the three di�er-
ential equations, (37), (38) and (40), describes wave-

averaged behavior of the functions in system (29).
Below we shall refer to this system, which serves to
determine the functions with `hats', as to system (A).

The following group consists of ®ve equations (41)±
(45) (system (B)). It describes the dependence of func-
tions on ~t . The function qÃ(x ) in (41) should be con-

sidered as being known, since it has been determined
by formula (47). Di�erentiating (41) partially over ~t
we obtain a wave equation for qÄ

@ 2 ~q

@ ~t 2
� @

@ ~t
~A 1 � 2ĉ2 ~q :

The general solution of this equation can be written as

~q � ~q 0�x� sin f �48�

where f � o �x�~t � f0�x�, o �
�����������ÿ2ĉ2
p

.
Presenting other functions with tildes in Eqs. (42)±

(45) as the products

~K � ~K
0�x� cos f, ~R � ~R

0�x� cos f,

~W � ~W
0�x� cos f, ~d � ~d

0�x� cos f �49�

and substituting (48), we get the relations between

amplitudes

~K
0 � ÿ2

�
K̂ÿ 4

5

�
~q 0

o
, ~R

0 � 2R̂�1ÿ â2R̂� ~q
0

o
,

~W
0 � ÿ2�1� Ŵ� ~q

0

o
, ~d

0 � 2p̂1�2ÿ â2R̂� ~q
0

o
: �50�

According to relations (49) the functions KÄ, RÄ , ~W , dÄ

oscillate under the cosine law and the function qÄ under

the sine law. The amplitudes of oscillations (50) are
proportional to the amplitude of vertical mass ¯ow os-
cillation qÄ '. The similar relations can be obtained for

turbulence kinetic energy E. Applying a small par-
ameter decomposition procedure in a form of (32) to
the equation for E in (29) results in the following
equations for zero and ®rst-order approaches accord-

ingly

dÊ

dx
� ÿ2Ê

R̂
,
@ ~E

@ ~t
� ÿ2Ê ~q : �51�

In (51), presenting the function in a form of a product
~E �x, ~t � � ~E

0�x� cos f, for the amplitude of turbulence
kinetic energy oscillation we obtain EÄ '(x )=2EÃqÄ '/o.

V.A. Babenko / Int. J. Heat Mass Transfer 42 (1999) 4549±45654558



To ®nd out the amplitude of vertical mass ¯ow oscil-
lation, let us refer to Eq. (46). Substituting the relation

(48) here gives

d ~q 0

dx
� ~q 0�ĉ3 � p̂� 4q̂�: �52�

It follows from system (B) that, as in the previously
considered case of a small Froude number, [9], the os-

cillations in the far region are nearly harmonic: these
are the sine waves with the frequency and amplitudes
dependent on x. The amplitude of qÄ-oscillations, qÄ '(x ),
can be calculated from the ordinary di�erential
equation (52), all the other amplitudes are related to qÄ '
with algebraic ties (50). The phase of qÄ-oscillations is
shifted to a quarter of the period to that of the other

functions.
Considering subsystem (A) one can note that the

functions with `hats' depend only on `slow' variable x.
Two equations of this subsystem are algebraic. It
means that at some initial point only three initial con-
ditions from ®ve, say KÃ0, RÃ0, dÃ0, determine the sub-

sequent evolution of mean values. Depending on the
chosen initial set of parameters KÃ0, RÃ0, dÃ0, we obtain
the di�erent laws of evolution and the di�erent ®nal
states of turbulence at ~t41.

System (A) was investigated for in®nity time. First,
stationary solutions of (A) were found. Doing so, an
algebraic system resulting from the derivatives on the

left-hand-side of (A) equalling zero was reduced to a
single transcendental equation which was then solved
numerically. All the solutions having a physical sense

(KÃ, dÃ $ (0, 1), RÃ , Ŵr0) were considered. It was found
that together with that obtained earlier in [10] an

asymptotic mode in which the turbulent Reynolds
number Rl 4 0 at ~t � 1, there is another asymptotic

mode for which Rl const at in®nity time (see Fig. 8,
branches 2±4). The numerical solution of subsystem
(A) for di�erent sets of initial conditions supported the

prediction from the stationary analysis existence of an
asymptotic mode with Rl4 const and let us determine
that these are branches 1 and 2 which are realised at

in®nity time. Since the asymptotic branches 3 and 4 in
Fig. 8 were not detected in the numerical solution of
the non-stationary problem, they are omitted in the

subsequent ®gures. Mode 1 at s>1 represents the fos-
silisation regime (K= 0.8), while Mode 2 responds to

the asymptotic state with a large turbulent Reynolds
number and very close to isotropy (K= 0.35).
The second mode only appears at large Prandtl

numbers (s>64). For this one the period of internal
gravity waves (Fig. 9) is close to that of 3.6 and nearly
constant. The value of T which corresponds to the ®rst

(fossilisation) mode at s>1 proved to be noticeably
higher, T 1 4.3. Other characteristics of the second

mode take an intermediate position between analogous
functions for Mode 1 at s < 1 and s>1 as well. The
behavior of the time scale ratio (Fig. 10) is an excep-

tion. With an increasing Prandtl number the ratio R/
R1 increases to three. It is much more than that for
Mode 1 for all ranges of s. The scale ratio R reaches

the value 0.62 at s>>1. The rate of TKE decay for
Mode 2 (Fig. 10) exceeds that for Mode 1, but, at the
same time it is noticeably less than the characteristic

exponent of 2.5 peculiar for Mode 1 at s < 1. For
both modes at s>1 the ratio of the kinetic energy of

Fig. 8. Parameter d(R 2
l) (left axis, solid curves) and turbulence

Reynolds number Rl (right axis, dashed curves) versus

Prandtl number s for the various asymptotic branches.

Fig. 9. Period of internal gravity waves T versus Prandtl num-

ber s for asymptotic branches 1 and 2.
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the vertical velocity ¯uctuation to the potential energy

of density ¯uctuation K/W di�ers from unity, the value
usual for pure linear oscillations (see branch 1 at
s < 1, Fig. 11).

Mode 1 at s < 1 thus, represents the special linear
case of oscillations. It is the only branch, where the
wave-averaged vertical ¯ux qÃ is zero in the ®nal stage

(Fig. 12). It can also be demonstrated by comparing
the amplitudes of waves fÄ ' with the corresponding

mean values, fÃ. In contrast to the other branches, for
this mode (Mode 1 at s < 1) the amplitudes decrease

more slowly than mean values. Branches 1 and 2 at

s < 1 are similar to some extent. They both corre-

spond to the absence of signi®cant in¯uences of strati-
®cation in the ®nal stage of turbulence decay (see Fig.

12). In some other aspects they are also alike (Figs. 9

and 13). Nevertheless, an essential di�erence between

Fig. 10. Asymptotic ratio R/R1 (left axis, solid curves) and

the exponent in power law of TKE decay bE (right axis,

dashed curves) for asymptotic branches 1 and 2 versus

Prandtl number s.

Fig. 11. The ratio of kinetic energy of vertical velocity ¯uctu-

ations to potential energy of density ¯uctuation for two

asymptotic modes at various Prandtl numbers.

Fig. 12. The dependence of dimensionless vertical mass ¯ux q

on Prandtl number s for branches 1 and 2 of asymptotic sol-

ution.

Fig. 13. The ratio of potential energy of density ¯uctuations

to TKE, y, for branches 1 and 2 of asymptotic solution versus

molecular Prandtl number s.
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the two modes is formed by the fact that the turbu-

lence Reynolds number tends to zero for the former

and remains high for the latter.

At any molecular Prandtl/Schmidt number s the in-

itial area of state for wave-averaged functions fÃ is

de®ned only by the three initial conditions KÃ0, RÃ0, dÃ0.

Depending on these three parameters the solution of

(A) tends to di�erent asymptotic limits, described in

Figs. 8±13. The di�erential system (A) was solved with

Gear's method for various initial data sets. For in-

itially strong turbulence (dÃ0=0.1) Fig. 14 shows the

obtained map of initial states leading to one (Rl 4 0,

the area above the lines) or another (Rl 4 const, the

area below the lines ) ®nal mode. As one can see, the

asymptotic mode with Rl 4 const can only be realized

at high values of the molecular Prandtl number

(s>10.5). At low values of dÃ0 (at dÃ0=0.05 and es-

pecially at dÃ0=0.03) the curves separating these two

areas are almost vertical with the small dependence on

KÃ0.

The ®rst mode (Rl4 0) corresponds to fossil turbu-

lence in a ®nal stage when more energy is in a poten-

tial form and a gravity wave dissipates slowly. The

essence of this regime was described in detail in [10],

where the asymptotic laws of evolution were deduced.

The area of initial states tending to this mode is

shrunk with the growth of s and K0 as well as with the

lowering of d0. In a fossil mode dissipation is lower

than for branch 2, which is similar to a passive scalar

case. Various scenarios of turbulence decay in strati®ed

media depending on a set of initial parameters have
also been pointed out in published experimental works.

To complete the description of two-scale decompo-
sition it is necessary to determine the coordinate x and
the function t�x, ~t �. These values can be calculated

from di�erential equations

dt

d~t
� p � 4d

5R1
� 5�1ÿ d �

3R
,

dx
d~t
� 1

t1
�53�

where the functions d�x�~t �, ~t � and R�x�~t �, ~t � are given
by two terms of decompositions (32)

d�~t � � d̂�x� �
~d
0�x� cos�o �x�~t �

t21
,

R�~t � � R̂�x� �
~R
0�x� cos�o �x�~t �

t21
:

At a large t1 system (53) can be solved approximately.
Expanding the functions p and t1 into the series up to

terms of the order 1/tÃ21

p � p̂� ~p

t̂
2

1

� � � � , t1 � t̂1 �
�t

t̂1
� ~t

t̂
2

1

. . . ,

and combining the terms with identical exponents of tÃ1
we have the following set of equations

dt̂1
d~t
� p̂�x�, d �t

d~t
� 0,

ÿ �t p̂�x� � d~t

d~t
� F�x� cos�o �x�~t �,

where

F�x� � dp̂

dR̂
~R
0�x� � dp̂

d�d̂�
~d
0�x�

�
 
ÿ 5�1ÿ d̂�

3R̂
2

!
~R
0�x� �

�
4

5R1
ÿ 5

3R̂

�
~d
0�x�:

Since the derivative dx=d~t � 1=t1 is small the function
pÃ(x ) and F(x ) in (54) can be thought of as being con-

stant. So the approximation solution of (54) is

t̂1 � t̂10 � p̂�~t ÿ ~t 0�, �t � �t 0,

~t � ~t 0 � �t 0p̂~t � �F=o � sin�o ~t �:

As a result, the expression for t1�~t � takes the following
form

t1 � t̂1 �
�t 0

t̂1
� ~t 0 � �t 0p̂~t

t̂
2

1

� �F=o �
t̂
2

1

sin�o ~t �: �55�

Fig. 14. Map of the area of initial conditions R0, K0 leading

to asymptotic branches with Rl4 0 (space above the curves)

and Rl 4 const (space below the curves) for d0=0.1 and

d0=0.05.
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The ®rst term in (55) describes a linear growth of t1
with ~t , the second and third ones describe de¯ection

from the linear behavior of t1�~t �, and the fourthÐthe

oscillations imposed on the smooth variance of the

function. The numerical solution of the di�erential sys-
tem (1) fully supports the obtained law (55).

Comparing (55) with this numerical solution we were

able to determine the values of constants tÃ0, t0 and tÄ0.

Expression (55) together with the previously

obtained approximate solutions in the form (32) shows

that at large t1 oscillations in a strati®ed ¯ow have a
pure sine form, as it has been pointed out in [9], but at

a moderate t1 the form of oscillation is more complex

and depends on the relative values of amplitudes of os-

cillations in the numerator and the denominator of the
second term in (32). Figs. 15 and 16, where the results

of numerical solution of (1) are plotted, illustrate the

issue.

In these ®gures all the initial conditions and par-

ameters were the same as in the previous section except

that of the Froude number being replaced with a

rather large value of Fr = 1. In terms of our main
variables (28) it changes the initial conditions for the

two functions, q0 and W0. The e�ect of such a replace-

ment is the same as decreasing the variable E, because

it enters into the de®nitions of both. Thus, this extreme
case corresponds to the situation when total energy is

mostly contained in the potential energy of density

¯uctuations.

As the interaction of internal gravity waves and ir-

regular turbulent ¯uctuations is critically important for

prescribing strati®ed ¯ows, the information on what

terms and to what extent these are responsible for the
wave amplitude, frequency and decay laws can be use-

ful in modeling and comparison of speci®c features of
di�erent turbulent models. A review of the modern

second-order turbulence models capable of adequately

describing a strati®ed turbulence [8] shows that the
structure of them is de®nitely close to the structure of

system (1). In particular, a number of algebraic re-

lations is proposed for the transverse turbulent mass
¯ux. It has been noted, [8], that such algebraic re-

lations in models lead to excluding internal gravity

waves from consideration. Naturally, present analysis
supports this point of view to mass ¯ux oscillations as

a generator of oscillations in all other functions of the

model. Investigation by small parameter methods
clearly shows the role of algebraic relations (for the

variables q and W ) as averaging over the internal wave

oscillation.

The method developed in this study can be almost
repeated for other models of strati®ed homogeneous

turbulence. For example, let us consider the model in

[15] which is the baseline one in the compatible analy-
sis of strati®ed turbulence models in [8]. As the nu-

merical experiments by DNS [16] has shown, this

model is able to predict the amplitude and period of
internal gravity waves. The structure of this model,

[15], is very similar to that of system (1) with the

exception that some constants of the model in [15] are

Fig. 15. Time evolution of vertical mass ¯ux q1=q/Fr 2 in

comparison with the evolution of averaged ¯ux qÃ1 in initial

part of trajectory; (a) q1 � q1�~t �, (b) q1=q1(Fr Tr).

Fig. 16. Time evolution of TKE in comparison with the evol-

ution of averaged energy EÃ. (a), (b) Initial part of trajectory;

(a) E � E�~t �, (b) E=E(Fr Tr).
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replaced with the functions from the turbulent
Reynolds number and the Prandtl number in (1). After

the term-by-term comparison of Eqs. (1)±(8) from [8]
(model LS/MTS, [15]) and Eqs. (1) of this paper
(model Ref. [6]) the di�erences between them can be

summarized in the following Table.
Looking at Table 1, one can see that many of the

terms from both the columns at d = 0 are very close

to each other. If it were so in every equation, the
terms in the left column may be reasonably considered
as a universal extension of the right column terms to
the variance of Re and Pr numbers (remember that the

equations of the model in [6,12] were deduced demand-
ing such a universality). Unfortunately, there are also
signi®cant disturbing di�erences to make such a con-

clusion, namely in the second, third and ®fth lines of
the table. Probably, the most obvious di�erence is in
the third line, with the value of constant C1=1.5 being

three times lower than the value of the corresponding
terms in the left column at d= 0. The matter needs to
be studied further taking into account that the value of

constant C121.5 is rather common.
Being expressed through the variables (28), the

equations in [15] look very similar to system (29)

t1 dK=d~t � 2�1ÿ C1��Kÿ 1=3�Rÿ1 � 2q�Kÿ 4=5�,

t1 dR=d~t � 2�CE2 ÿ 1� ÿ 2Cd5 ÿ R�Cd4 ÿ 2�

ÿ 2qR�1ÿ CE3 ÿ �Cd1 ÿ 2�=�2W��,

t1 dW=d~t � 2�Rÿ1 ÿ 1�Wÿ 2q�1� W�,

t1 dq=d~t � t21�Kÿ W�1ÿ C2y�� � �Cd4 ÿ 2� 2Rÿ1

� �1� Cd5 ÿ C1y��q� �2ÿ �Cd1 ÿ 2�Wÿ1�q2,

dt1=d~t � �Cd4 ÿ 2� � 2Cd5R
ÿ1 ÿ �Cd1 ÿ 2�qWÿ1,

t1 dE=d~t � ÿ2ERÿ1 ÿ 2qE, �56�

and can be analyzed at large t1 by the same procedure
of asymptotic expansion (32)±(34). Doing so, the

equations of (56) are split into systems describing the
wave-averaged behavior of functions [similar to (35),
(37)±(40), and (47)], the internal waves [similar to

(48)±(51)], and the variance of amplitude [analogous to
(52)]. The system for wave-averaged functions after
substituting the numerical values of the constants takes

the following form:

t1 dK̂=d~t � ÿ�K̂ÿ 1=3�R̂ÿ1 � 2q̂�K̂ÿ 4=5�,

t1 dR̂=d~t � 0:06ÿ 0:2R̂�1� q̂=Ŵ� � R̂q̂,

q̂ � ÿ 5

14R̂

�
K̂ÿ 1

3
� 2K̂�1ÿ R̂�

�
,

t1 dÊ=d~t � ÿ2Ê�R̂ÿ1 � q̂�,

t1 d�d̂�=d~t � p̂1�ÿ0:34R̂
ÿ1 ÿ q̂�,

Â � K̂ÿ 0:6Ŵ � 0,

dt1=d~t � 0:2�1� q̂=Ŵ� � 1:6R̂
ÿ1
: �57�

Initial conditions for system (56) were based on those
given in [8]: K0=1/3, R0=1, q0=0, W0=2.415 � 10ÿ2,
E0=1, d0=5 � 10ÿ3, t10=5.255 with the exception
that the condition for W was slightly enlarged com-
pared with [8], W0=Epot/k= 10ÿ2/0.414=2.415 � 10ÿ2

for the reason that at lower values of Epot the solution
of the problem turned out to be sensitive to the
variance of W0. Remember, that in contrast to [8]

where the Runge±Kutta method was used, we used
Gear's method for the integration of system (56). The
initial condition for E could be chosen arbitrarily, so

the value E0=1 was taken. The value of parameter

d0�R2
l0� � 1ÿ 2=�1�

����������������������������
1� 2800=R2

l0

q
� was calculated

using the initial condition for the turbulent Reynolds
number from [8], R 2

l0=20 � 6925=1.385 � 105. The
initial conditions for the `smoothed' system were
adjusted to better represent the wave-averaged be-

havior of the functions: KÃ0=0.185, RÃ0=0.9, Ŵ � 0:43,
EÃ0=0.81, dÃ0=7.4 � 10ÿ3.
The numerical solutions of systems (56) and (57) are

compared in Figs. 17±19. As one can see, the solution
of the `smoothed' system (57) really describes the
wave-averaged functions from (56). An agreement

between them could be better if larger initial values of
variable t1 were taken. Nevertheless, even at a rela-
tively low value of t10 the results of the comparison

Table 1

Di�erences between systems (1) and (1)±(8) from [15]

Model [6] Model [15]

F ��u =2 � 11
6 ÿ 13

30d CE2=1.83

d [2s/(1+s )](s1+3/5)(R/R1) CE3 � 3
2

9
2 �1ÿ d � � d C1 � 3

2
1
3 � d�Kÿ 1

3 � C2y=0.4

�1ÿ d �� 16 � 5KR� � d�s1 � 3
5 ��R=R1� C1y=3

2� 4
5 �d=R1� Cd4=2.2

5
6 �1ÿ d � Cd5=0.8

2 Cd1=1.8
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support clearly the asymptotic analysis of this section.
It is seen from Fig. 17, in particular, that the average
value of a complex Â � K̂ÿ 0:6Ŵ is close to zero. It

means that the relation AÃ=0 really represents the
dynamic equilibrium condition between the potential
and kinetic energy of strati®ed turbulence during oscil-
lations caused by gravity force. This relation is similar

to that of AÃ1=0 for the model in [6]. In the case of
very strong turbulence (d<<1) the condition AÃ1=0
looks like:

K̂ÿ 2

3
Ŵ � 0:

The equation for the average value of vertical mass

¯ux qÃ in (57) is obtained by di�erentiating the

condition AÃ=0. It is also in good agreement with
the calculated dependence q�~t � (Fig. 17). Plots of

q�~t � and A�~t � are shifted to a quarter of the

period, the value of the period being prescribed

in the analysis of (56) and (57) as a constant
Nt � 2p=o � 2p=

�������������
2�7=5�p � 3:75. This numerical

value coincides with that obtained by solving

system (56) numerically and is close to that

calculated by formulae (48) in an isotropic

state at a strong turbulence (d<<1):
Nt � 2p=o � 2p=

���������������������������������ÿ2�ÿ4=5ÿ 2=3�p � 3:67.
Since the considered initial conditions for the model

in [15] are those that d0<<1 and qÃ0=0, the wave-aver-

aged values dÃ, EÃ and RÃ evolve in the initial stage of

evolution (Fig. 18) in agreement with those prescribed

in the previous laws section [see (22) and Figs. 1±3]. In
particular, let us calculate the exponent in the

evolution law of dÃ(t1), bdÃ=(t1/dÃ )[d(dÃ )/dt1]. In the

equations of the `smoothed' model (57) at qÃ=0 and

dÃ<<1 this exponent is equal to: bdÃ=ÿ[ÿ0.34RÃ ÿ1]/
(0.2+1.6RÃ ÿ1). At RÃ=1 it is very close (bdÃ=0.189)

to the above prescribed `one-®fth' law for dÃ, see (22).

At these conditions the TKE decays with the rate

bEÃ=(ÿ2RÃ ÿ1)/(0.2+1.6RÃ ÿ1)=ÿ2/(0.2+1.6)=ÿ1.11
[see, for comparison, bdÃ=1/5, bEÃ=ÿ6/5 in (21)]. The

evolution of KÃ (Fig. 19) reveals much slower relaxation

than in theory [6] due to a much lower coe�cient at

deviator KÃÿ1/3 on the right-hand-side of the equation
for KÃ from [5] than in (37).

In conclusion, it is interesting to investigate whether
theory [15] lets the turbulent Reynolds number Rl tend

to a non-zero asymptotic value, as in theory [6].

Fig. 17. Wave and wave-averaged turbulent mass ¯ux q and

function A, representing dynamic equilibrium between kinetic

and potential energy in the model in [15].

Fig. 18. Wave and wave-averaged behavior of TKE E, time

scale ratio R, and turbulence Reynolds number parameter d

in the model in [15].

Fig. 19. Comparison of full and wave-averaged dependencies

of ratios W�~t � and K�~t � calculated according to the model in

[15].
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To investigate this problem, the derivatives on the
left-hand-side of (57) were equalled to zero, and the

resulting algebraic stationary system was solved.
Unfortunately, no stationary asymptotic solutions
having physical sense were found this way, since model

[15] did not pretend to describe the ®nal stage of tur-
bulence decay. So the existence of various asymptotic
modes detected in this paper remains unsupported by

the analysis of other models.

5. Conclusions

1. Using the model [6,12] of strati®ed homogeneous
turbulence the initial stage of evolution has been
considered analytically at a small inverse Froude

number Fr and an initially strong turbulence Rl>>1.
This stage corresponds to a small wave-averaged
turbulent mass ¯ux qÃ as compared with the oscil-

lations of q(t ). Under these conditions the ¯ux qÃ

behaves as a passive impurity and can be found
after taking into account all the other functions in

(9). The approximate analytical solutions (22) in the
case of d<<1 and in a more common case (16)±(20),
and (27) are in agreement with the numerically
obtained results (Figs. 1±7). The initial stage of

evolution is determined mainly by the variance of
the turbulent Reynolds number.

2. The case of the arbitrary Froude number was

studied at a large time scale of density ®eld, Tr. The
application of a small parameter method in combi-
nation with a multiple scales method let us formu-

late the mathematical systems, describing as regular
oscillation, an averaged values variance. This analy-
sis enables one to calculate the parameters of an in-
ternal gravity wave, namely the amplitude,

frequency and wave-averaged behavior. According
to this analysis the evolution of strati®ed turbulence
can be treated as a non-linear (in common cases) in-

ternal gravity wave imposed on irregular turbulence
¯uctuations. The energy of this wave is borrowed
from a density ¯uctuation ®eld and a velocity ¯uctu-

ation ®eld, showing that the interaction of regular
oscillations (gravity waves) and turbulent ¯uctu-
ations can lead to di�erent ®nal states dependent on

initial sets of variables (Fig. 13).
3. Analysis of the turbulence model [6] was supported

by the analysis of the model in [15] from [8] with
the same method. The parameters of both the

models were compared. Some of them turned out to
be very close to each other. Despite the relatively
low initial value Tr0, the numerical data of [8]

agrees well with the asymptotic analysis of this
paper. In particular, the frequency of internal grav-
ity wave and wave-averaged behavior (Figs. 17±19)

coincided with those in the numerical data of [8].

The analytical expressions of the developed analysis
clearly shows the in¯uence of various constants of

the models to the characteristics of the solution,
thus appropriating the modeling process.
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